Energy scattering for a class of inhomogeneous nonlinear Schrödinger equation in two dimensions
نویسندگان
چکیده
We consider a class of [Formula: see text]-supercritical inhomogeneous nonlinear Schrödinger equations in two dimensions text] where and text]. Using new approach Arora et al. [Scattering below the ground state for 2D radial equation, Proc. Amer. Math. Soc. 148 (2020) 1653–1663], we show energy scattering equation with radially symmetric initial data. In focusing case, our result extends one Farah Guzmán INLS higher dimensions, Bull. Braz. (N.S.) 51 449–512] to whole range local well-posedness is available. defocusing [V. D. Dinh, Energy J. Evol. Equ. 19(2) (2019) 411–434], non-radial data was established
منابع مشابه
On a class of nonlinear fractional Schrödinger-Poisson systems
In this paper, we are concerned with the following fractional Schrödinger-Poisson system: (−∆s)u + V (x)u + φu = m(x)|u|q−2|u|+ f(x,u), x ∈ Ω, (−∆t)φ = u2, x ∈ Ω, u = φ = 0, x ∈ ∂Ω, where s,t ∈ (0,1], 2t + 4s > 3, 1 < q < 2 and Ω is a bounded smooth domain of R3, and f(x,u) is linearly bounded in u at infinity. Under some assumptions on m, V and f we obtain the existence of non-trivial so...
متن کاملOn the Blowup for the L2-Critical Focusing Nonlinear Schrödinger Equation in Higher Dimensions below the Energy Class
We generalize recent work by J. Colliander, S. Raynor, C. Sulem, and J. D. Wright, [14], and T. Hmidi and S. Keraani, [21], on the blowup of the two-dimensional L-critical focusing NLS below the energy space, to all dimensions d ≥ 3. More precisely, we show that blowup solutions from initial data in H(R), s > s0(d) and d ≥ 3, concentrate at least the mass of the groundstate at the blowup time.
متن کاملGlobal Well - Posedness and Scattering for the Energy - Critical Nonlinear Schrödinger Equation In
We obtain global well-posedness, scattering, and global L10 t,x spacetime bounds for energy-class solutions to the quintic defocusing Schrödinger equation in R1+3, which is energy-critical. In particular, this establishes global existence of classical solutions. Our work extends the results of Bourgain [4] and Grillakis [20], which handled the radial case. The method is similar in spirit to the...
متن کامل6 Global Well - Posedness and Scattering for the Defocusing Energy - Critical Nonlinear Schrödinger Equation in R
We obtain global well-posedness, scattering, uniform regularity, and global L6t,x spacetime bounds for energy-space solutions to the defocusing energy-critical nonlinear Schrödinger equation in R × R. Our arguments closely follow those in [11], though our derivation of the frequency-localized interaction Morawetz estimate is somewhat simpler. As a consequence, our method yields a better bound o...
متن کاملInverse Problem for an Inhomogeneous Schrödinger Equation * †
Let (− k 2)u = −u + q(x)u − k 2 u = δ(x), x ∈ R, ∂u ∂|x| − iku → 0, |x| → ∞. Assume that the potential q(x) is real-valued and compactly supported: q(x) = q(x), q(x) = 0 for |x| ≥ 1, 1 −1 |q|dx < ∞, and that q(x) produces no bound states. Let u(−1, k) and u(1, k) ∀k > 0 be the data. Theorem.Under the above assumptions these data determine q(x) uniquely.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Hyperbolic Differential Equations
سال: 2021
ISSN: ['1793-6993', '0219-8916']
DOI: https://doi.org/10.1142/s0219891621500016